ucsdhealthsciences:

Fear, Safety and the Role of Sleep in Human PTSD

Fragmented REM sleep may hinder effective treatment of mental health condition

The effectiveness of post-traumatic stress disorder (PTSD) treatment may hinge significantly upon sleep quality, report researchers at the University of California, San Diego School of Medicine and Veterans Affairs San Diego Healthcare System in a paper published today in the Journal of Neuroscience.

“I think these findings help us understand why sleep disturbances and nightmares are such important symptoms in PTSD,” said Sean P.A. Drummond, PhD, professor of psychiatry and director of the Behavioral Sleep Medicine Program at the VA San Diego Healthcare System. “Our study suggests the physiological mechanism whereby sleep difficulties can help maintain PTSD. It also strongly implies a mechanism by which poor sleep may impair the ability of an individual to fully benefit from exposure-based PTSD treatments, which are the gold standard of interventions.

“The implication is that we should try treating sleep before treating the daytime symptoms of PTSD and see if those who are sleeping better when they start exposure therapy derive more benefit.”

PTSD is an often difficult-to-treat mental health condition triggered by a terrifying event. It is frequently associated with persons who have served in war zones and is characterized by severe anxiety, flashbacks, nightmares and uncontrollable thoughts, often fearful. Research has shown that fear conditioning, considered an animal model of PTSD, results in disruption of animals’ rapid eye movement (REM) sleep – periods of deeper, dream-filled slumber. Fear conditioning is a form of learning in which the animal model is trained to associate an aversive stimulus, such as an electrical shock, with a neutral stimulus, such as a tone or beep.

Drummond and colleagues investigated the impact of fear conditioning – and another form of behavioral training called safety signal learning – upon human REM sleep, using 42 healthy volunteers tested over three consecutive days and nights. Safety signals are learned cues that predict the non-occurrence of an aversive event.

“We examined the relationship between REM sleep and the ability to learn – and consolidate memory for – stimuli that represent threats and that represent safety,” said Drummond.

“In PTSD, humans learn to associate threat with a stimulus that used to be neutral or even pleasant. Often, this fear generalizes so that they have a hard time learning that other stimuli are safe. For example, a U.S. Marine in Iraq might suffer trauma when her personnel carrier is blown up by road side bomb hidden in trash alongside the road. When she comes home, she should learn that trash on the side of I-5 does not pose a threat – it’s a safe stimulus – but that may be difficult for her.”

The researchers found that increased safety signaling was associated with increased REM sleep consolidation at night and that the quality of overnight REM sleep was related to how well volunteers managed fear conditioning.  

Drummond said stimuli representing safety increased human REM sleep and that “helps humans distinguish threatening stimuli from safe stimuli the next day. So while animal studies focused on learning and unlearning a threat, our study showed REM sleep in humans is more related to learning and remembering safety.”

He noted, however, that the findings are not conclusive. No comparable animal studies, for example, have examined the relationship between safety and REM sleep. Nonetheless, the findings do encourage further investigation, eventually into human PTSD populations where fear, safety and sleep are on-going and paramount concerns among military veterans and others.

“A very large percentage of missions in both Iraq and Afghanistan were at night,” said Drummond, who is also associate director of the Mood Disorders Psychotherapy Program at VA San Diego Healthcare System. “So soldiers learned the night was a time of danger. When they come home, they have a hard time learning night here is a time to relax and go to sleep.”

(via neurosciencestuff)



depressioncomix:

More Peanuts, one of the first comics to tackle depression. Thank you Mr. Schultz.

depressioncomix:

More Peanuts, one of the first comics to tackle depression. Thank you Mr. Schultz.

(via psychologytreasure)



curiouslymistook:

healthycomfyhappy:

blk0912:

boredandmoist:

This time last year I was unemployed, broke, and suicidal.

Today, I just got the keys to my first house.

Give it time.

Needed this today

when you hear people preach that it gets better, they aren’t joking. if it’s not better yet, it will be. 

this post could literally be saving lives rn and that is why i love this website.

(via bluereverie)


Recovery achievements

lifeaccordingtohan:

A few months ago I was unable to get out of bed. Unable to prepare my own food, barely able to eat. I was unable to spend a whole day awake. Unable to shower and wash my own hair.

I was physically unable to do these things. I had no idea if I’d ever get through it.

But I am getting through it! I still struggle with these things. Last week I managed to stay awake from 7am until 10pm and that is still a massive achievement for me (I even phoned my mum, who told me how proud she was of me for doing so!).

Achieving basic self care is difficult when you have a mental health problem and I want you all to know how proud I am of all of you for these small achievements. If you manage to get out of bed, shower or cook a meal they are such amazing achievements.

An important thing for me was realising this and not beating myself up that I hadn’t done more!! Yes, for ‘healthy’ people this is not much of an achievement, but when you’re recovering from a mental illness these are amazing achievements!

Never put yourself down because you haven’t achieved enough. I know it’s hard but try and be proud of your achievements. I think you’re all amazing to be fighting at all!!

(via clinicallydepressedpug)


neurosciencestuff:

This is Your Brain on Drugs
Funded by a $1 million award from the Keck Foundation, biomedical researchers at UCSB will strive to find out who could be more vulnerable to addiction
We’ve all heard the term “addictive personality,” and many of us know individuals who are consistently more likely to take the extra drink or pill that puts them over the edge. But the specific balance of neurochemicals in the brain that spurs him or her to overdo it is still something of a mystery.
“There’s not really a lot we know about specific molecules that are linked to vulnerability to addiction,” said Tod Kippin, a neuroscientist at UC Santa Barbara who studies cocaine addiction. In a general sense, it is understood that animals — humans included — take substances to derive that pleasurable rush of dopamine, the neurochemical linked with the reward center of the brain. But, according to Kippin, that dopamine rush underlies virtually any type of reward animals seek, including the kinds of urges we need to have in order to survive or propagate, such as food, sex or water. Therefore, therapies that deal with that reward system have not been particularly successful in treating addiction.
However, thanks to a collaboration between UCSB researchers Kippin; Tom Soh, professor of mechanical engineering and of materials; and Kevin Plaxco, professor of chemistry and biochemistry — and funding from a $1 million grant from the W. M. Keck Foundation — the neurochemistry of addiction could become a lot less mysterious and a lot more specific. Their study, “Continuous, Real-Time Measurement of Psychoactive Molecules in the Brain,” could, in time, lead to more effective therapies for those who are particularly inclined toward addictive behaviors.
“The main purpose is to try to identify individuals that would be vulnerable to drug addiction based on their initial neurochemistry,” said Kippin. “The idea is that if we can identify phenotypes — observable characteristics — that are vulnerable to addiction and then understand how drugs change the neurochemistry related to that phenotype, we’ll be in a better position to develop therapeutics to help people with that addiction.”
To identify these addiction-prone neurochemical profiles, the researchers will rely on technology they recently developed, a biosensor that can track the concentration of specific molecules in vivo, in real time. One early incarnation of this device was called MEDIC (Microfluidic Electrochemical Detector for In vivo Concentrations). Through artificial DNA strands called aptamers, MEDIC could indicate the concentration of target molecules in the bloodstream. 
“Specifically, the DNA molecules are modified so that when they bind their specific target molecule they begin to transfer electrons to an underlying electrode, producing an easily measurable current,” said Plaxco. Prior to the Keck award, the team had shown that this technology could be used to measure specific drugs continuously and in real time in blood drawn from a subject via a catheter. With Keck funding, “the team is hoping to make the leap to measurements performed directly in vivo. That is, directly in the brains of test subjects,” said Plaxco.
For this study, the technology would be modified for use in the brain tissue of awake, ambulatory animals, whose neurochemical profiles would be measured continuously and in real time. The subjects would then be allowed to self-dose with cocaine, while the levels of the drug in their brain are monitored. Also monitored are concomitant changes in the animal’s neurochemistry or drug-seeking (or other) behaviors.
“The key aspect of it is understanding the timing of the neurochemical release,” said Kippin. “What are the changes in neurochemistry that causes the animals to take the drug versus those that immediately follow consumption of the drug?”
Among techniques for achieving this goal, a single existing technology allows scientists to monitor more than one target molecule at a time (e.g., a drug, a metabolite, and a neurotransmitter). However, Kippin noted, it provides an average of one data point about every 20 minutes, which is far slower than the time course of drug-taking behaviors and much less than the sub-second timescale over which the brain responds to drugs. With the implantable biosensor the team has proposed, it would be possible not only to track how the concentration of neurochemicals shift in relation to addictive behavior in real time, but also to simultaneously monitor the concentrations of several different molecules.
“One of our hypotheses about what makes someone vulnerable to addiction is the metabolism of a drug to other active molecules so that they may end up with a more powerful, more rewarding pharmacological state than someone with a different metabolic profile,” Kippin said. “It’s not enough to understand the levels of the compound that is administered; we have to understand all the other compounds that are produced and how they’re working together.”
The implantable biosensor technology also has the potential to go beyond cocaine and shed light on addictions to other substances such as methamphetamines or alcohol. It also could explore behavioral impulses behind obesity, or investigate how memory works, which could lead to further understanding of diseases such as Alzheimers.

neurosciencestuff:

This is Your Brain on Drugs

Funded by a $1 million award from the Keck Foundation, biomedical researchers at UCSB will strive to find out who could be more vulnerable to addiction

We’ve all heard the term “addictive personality,” and many of us know individuals who are consistently more likely to take the extra drink or pill that puts them over the edge. But the specific balance of neurochemicals in the brain that spurs him or her to overdo it is still something of a mystery.

“There’s not really a lot we know about specific molecules that are linked to vulnerability to addiction,” said Tod Kippin, a neuroscientist at UC Santa Barbara who studies cocaine addiction. In a general sense, it is understood that animals — humans included — take substances to derive that pleasurable rush of dopamine, the neurochemical linked with the reward center of the brain. But, according to Kippin, that dopamine rush underlies virtually any type of reward animals seek, including the kinds of urges we need to have in order to survive or propagate, such as food, sex or water. Therefore, therapies that deal with that reward system have not been particularly successful in treating addiction.

However, thanks to a collaboration between UCSB researchers Kippin; Tom Soh, professor of mechanical engineering and of materials; and Kevin Plaxco, professor of chemistry and biochemistry — and funding from a $1 million grant from the W. M. Keck Foundation — the neurochemistry of addiction could become a lot less mysterious and a lot more specific. Their study, “Continuous, Real-Time Measurement of Psychoactive Molecules in the Brain,” could, in time, lead to more effective therapies for those who are particularly inclined toward addictive behaviors.

“The main purpose is to try to identify individuals that would be vulnerable to drug addiction based on their initial neurochemistry,” said Kippin. “The idea is that if we can identify phenotypes — observable characteristics — that are vulnerable to addiction and then understand how drugs change the neurochemistry related to that phenotype, we’ll be in a better position to develop therapeutics to help people with that addiction.”

To identify these addiction-prone neurochemical profiles, the researchers will rely on technology they recently developed, a biosensor that can track the concentration of specific molecules in vivo, in real time. One early incarnation of this device was called MEDIC (Microfluidic Electrochemical Detector for In vivo Concentrations). Through artificial DNA strands called aptamers, MEDIC could indicate the concentration of target molecules in the bloodstream. 

“Specifically, the DNA molecules are modified so that when they bind their specific target molecule they begin to transfer electrons to an underlying electrode, producing an easily measurable current,” said Plaxco. Prior to the Keck award, the team had shown that this technology could be used to measure specific drugs continuously and in real time in blood drawn from a subject via a catheter. With Keck funding, “the team is hoping to make the leap to measurements performed directly in vivo. That is, directly in the brains of test subjects,” said Plaxco.

For this study, the technology would be modified for use in the brain tissue of awake, ambulatory animals, whose neurochemical profiles would be measured continuously and in real time. The subjects would then be allowed to self-dose with cocaine, while the levels of the drug in their brain are monitored. Also monitored are concomitant changes in the animal’s neurochemistry or drug-seeking (or other) behaviors.

“The key aspect of it is understanding the timing of the neurochemical release,” said Kippin. “What are the changes in neurochemistry that causes the animals to take the drug versus those that immediately follow consumption of the drug?”

Among techniques for achieving this goal, a single existing technology allows scientists to monitor more than one target molecule at a time (e.g., a drug, a metabolite, and a neurotransmitter). However, Kippin noted, it provides an average of one data point about every 20 minutes, which is far slower than the time course of drug-taking behaviors and much less than the sub-second timescale over which the brain responds to drugs. With the implantable biosensor the team has proposed, it would be possible not only to track how the concentration of neurochemicals shift in relation to addictive behavior in real time, but also to simultaneously monitor the concentrations of several different molecules.

“One of our hypotheses about what makes someone vulnerable to addiction is the metabolism of a drug to other active molecules so that they may end up with a more powerful, more rewarding pharmacological state than someone with a different metabolic profile,” Kippin said. “It’s not enough to understand the levels of the compound that is administered; we have to understand all the other compounds that are produced and how they’re working together.”

The implantable biosensor technology also has the potential to go beyond cocaine and shed light on addictions to other substances such as methamphetamines or alcohol. It also could explore behavioral impulses behind obesity, or investigate how memory works, which could lead to further understanding of diseases such as Alzheimers.

(via megacosms)


princessblogonoke:

Anxiety & Helping Someone Cope. 
I didn’t want to make it overwhelming or too long remember, so I kept it to the main points that benefit me greatly when I’m experiencing an attack.
40 million of Americans alone suffer with anxiety; it’s a horrid feeling when you know someone just wants to help you but you cannot even construct a simple sentence at the time, so please share this in hope that it benefits even just 1 person. Muchos love. 

(via mentalillnessmouse)


believeinrecovery:

A little table to how to get rid of all that negative self-talk. We have to learn look at the good in situations too, instead of dwelling on things we can’t change- because you know what? We may not be able to change what is happening but we CAN change how we view it! 

(via celestialallegorist)


healingschemas:

Emotion regulation refers to a person’s ability to understand and accept his or her emotional experience, to engage in healthy strategies to manage uncomfortable emotions when necessary, and to engage in appropriate behavior (e.g., attend classes, go to work, engage in social relationships) when distressed.
People with good emotion regulation skills are able to control the urges to engage in impulsive behaviors, such as self-harm, reckless behavior, or physical aggression, during emotional distress.

healingschemas:

Emotion regulation refers to a person’s ability to understand and accept his or her emotional experience, to engage in healthy strategies to manage uncomfortable emotions when necessary, and to engage in appropriate behavior (e.g., attend classes, go to work, engage in social relationships) when distressed.

People with good emotion regulation skills are able to control the urges to engage in impulsive behaviors, such as self-harm, reckless behavior, or physical aggression, during emotional distress.

(via clinicallydepressedpug)